## It will follow you

If will follow you for 1000 miles but not miss home. It desires neither food nor flowers. It fears not water, fire, knives, nor soldiers. But it disappears when the sun sets behind the western mountains. Who Am I?

Shadow.

If will follow you for 1000 miles but not miss home. It desires neither food nor flowers. It fears not water, fire, knives, nor soldiers. But it disappears when the sun sets behind the western mountains. Who Am I?

Shadow.

You have 25 horses. When they race, each horse runs at a different, constant pace. A horse will always run at the same pace no matter how many times it races.
You want to figure out which are your 3 fastest horses. You are allowed to race at most 5 horses against each other at a time. You don't have a stopwatch so all you can learn from each race is which order the horses finish in.
What is the least number of races you can conduct to figure out which 3 horses are fastest?

You need to conduct 7 races.
First, separate the horses into 5 groups of 5 horses each, and race the horses in each of these groups. Let's call these groups A, B, C, D and E, and within each group let's label them in the order they finished. So for example, in group A, A1 finished 1st, A2 finished 2nd, A3 finished 3rd, and so on.
We can rule out the bottom two finishers in each race (A4 and A5, B4 and B5, C4 and C5, D4 and D5, and E4 and E5), since we know of at least 3 horses that are faster than them (specifically, the horses that beat them in their respective races).
This table shows our remaining horses:
A1 B1 C1 D1 E1
A2 B2 C2 D2 E2
A3 B3 C3 D3 E3
For our 6th race, let's race the top finishers in each group: A1, B1, C1, D1 and E1. Let's assume that the order of finishers is: A1, B1, C1, D1, E1 (so A1 finished first, E1 finished last).
We now know that horse D1 cannot be in the top 3, because it is slower than C1, B1 and A1 (it lost to them in the 6th race). Thus, D2 and D3 can also not be in the to 3 (since they are slower than D1).
Similarly, E1, E2 and E3 cannot be in the top 3 because they are all slower than D1 (which we already know isn't in the top 3).
Let's look at our updated table, having removed these horses that can't be in the top 3:
A1 B1 C1
A2 B2 C2
A3 B3 C3
We can actually rule out a few more horses. C2 and C3 cannot be in the top 3 because they are both slower than C1 (and thus are also slower than B1 and A1). And B3 also can't be in the top 3 because it is slower than B2 and B1 (and thus is also slower than A1). So let's further update our table:
A1 B1 C1
A2 B2
A3
We actually already know that A1 is our fastest horse (since it directly or indirectly beat all the remaining horses). So now we just need to find the other two fastest horses out of A2, A3, B1, B2 and C1. So for our 7th race, we simply race these 5 horses, and the top two finishers, plus A1, are our 3 fastest horses.

You can easily "tile" an 8x8 chessboard with 32 2x1 tiles, meaning that you can place these 32 tiles on the board and cover every square.
But if you take away two opposite corners from the chessboard, it becomes impossible to tile this new 62-square board.
Can you explain why tiling this board isn't possible?

Color in the chessboard, alternating with red and blue tiles. Then color all of your tiles half red and half blue. Whenever you place a tile down, you can always make it so that the red part of the tile is on a red square and the blue part of the tile is on the blue square.
Since you'll need to place 31 tiles on the board (to cover the 62 squares), you would have to be able to cover 31 red squares and 31 blue squares. But when you took away the two corners, you can see that you are taking away two red spaces, leaving 30 red squares and 32 blue squares. There is no way to cover 30 red squares and 32 blue squares with the 31 tiles, since these tiles can only cover 31 red squares and 31 blue squares, and thus, tiling this board is not possible.

Many years ago a wealthy old man was near death. He wished to leave his fortune to one of his three children. The old man wanted to know that his fortune would be in wise hands. He stipulated that his estate would be left to the child who would sing him half as many songs as days that he had left to live.The eldest son said he couldn't comply because he didn't know how many days his father had left to live and besides he was too busy. The youngest son said the same thing. The man ended up leaving his money to his third child a daughter. What did his daughter do?

Every other day, the daughter sang her father a song.

Two workmen were repairing a roof. Suddenly, they both fell down the chimney and found themselves in the large fireplace.
One man`s face was smeared with soot and one wasn`t. The one with the clean face washed his and the dirty man did not and went back to work. Why?

When the two men looked at each other, the clean man thought his face was dirty as well. The dirty man, looking at the first's place, thought his was clean.

This is a newspaper headline:
Workers Strike - Want to Make Less Money!
What is going on?

The workers work at the mint and are tired of being overworked. They want to work less, which is making less money, since money is made at the mind!

You see a boat filled with people. It has not sunk, but when you look again you don't see a single person on the boat. Why?

All the people were married.

A train leaves from Halifax, Nova Scotia heading towards Vancouver, British Columbia at 120 km/h. Three hours later, a train leaves Vancouver heading towards Halifax at 180 km/h. Assume there's exactly 6000 kilometers between Vancouver and Halifax. When they meet, which train is closer to Halifax?

Both trains would be at the same spot when they meet therefore they are both equally close to Halifax.

Sometimes I am loved, usually by the young. Other times I am dreaded, mostly by the old ones. I am hard to remember, also hard to forget. And yet if you do, You'll make someone upset. I occur every day everyone has to face me. Even if you don't want it to happen; embrace me. What am I?

Birthday.

What is the word that is spelled incorrectly in all dictionaries?

Incorrectly.