# Clean riddles

## Will never walk, but always run

I have no legs. I will never walk, but always run. What am I?
A river.
70.14 %

## It can be cracked

It can be cracked, it can be made, It can be told, it can be played. What is it?
A joke.
70.11 %

## Don't break me

You can break me easily without even touching me or seeing me. What am I?
A promise (or silence).
70.11 %

## Move very slowly

I move very slowly at an imperceptible rate, although I take my time, I am never late. I accompany life, and survive past demise, I am viewed with esteem in many women's eyes. What am I?
70.11 %

## The building with number stories

I am the building with number stories. Find me who am I?
A library.
70.07 %

## Ring but no finger

What has a ring but no finger?
A telephone.
70.05 %

## The same birthday

What is the least number of people that need to be in a room such that there is greater than a 50% chance that at least two of the people have the same birthday?
Only 23 people need to be in the room. Our first observation in solving this problem is the following: (the probability that at least 2 people have the same birthday + the probability that nobody has the same birthday) = 1.0 What this means is that there is a 100% chance that EITHER everybody in the room has a different birthday, OR at least two people in the room have the same birthday (and these probabilities don't add up to more than 1.0 because they cover mutually exclusive situations). With some simple re-arranging of the formula, we get: the probability that at least 2 people have the same birthday = (1.0 - the probability that nobody has the same birthday) So now if we can find the probability that nobody in the room has the same birthday, we just subtract this value from 1.0 and we'll have our answer. The probability that nobody in the room has the same birthday is fairly straightforward to calculate. We can think of this as a "selection without replacement" problem, where each person "selects" a birthday at random, and we then have to figure out the probability that no two people select the same birthday. The first selection has a 365/365 chance of being different than the other birthdays (since none have been selected yet). The next selection has a 364/365 chance of being different than the 1 birthday that has been selected so far. The next selection has a 363/365 chance of being different than the 2 birthdays that have been selected so far. These probabilities are multiplied together since each is conditional on the previous. So for example, the probability that nobody in a room of 3 people have the same birthday is (365/365 * 364/365 * 363/365) =~ 0.9918 More generally, if there are n people in a room, then the probability that nobody has the same birthday is (365/365 * 364/365 * ... * (365-n+2)/365 * (365-n+1)/365) We can plug in values for n. For n=22, we get that the probability that nobody has the same birthday is 0.524, and thus the probabilty that at least two people have the same birthday is (1.0 - 0.524) = 0.476 = 47.6%. Then for n=23, we get that the probability that nobody has the same birthday is 0.493, and thus the probabilty that at least two people have the same birthday is 1.0 - 0.493) = 0.507 = 50.7%. Thus, once we get to 23 people we have reached the 50% threshold.
70.05 %

## Don't wash it and then it's clean

Wash it and it isn't clean. Don't wash it and then it's clean. What I Am?
Water.
70.03 %

## Twin brother

Peter celebrated his birthday on one day, and two days later his older twin brother, Paul, celebrated his birthday. How could this be?
When the mother of the twins went into labor, she was travelling by boat. The older twin, Paul, was born first, barely on March 1st. The boat then crossed a time zone, and the younger twin was born on February the 28th. In a leap year the younger twin celebrates his birthday two days before his older brother.
70.01 %