Two trains are traveling toward each other on the same track, each at 60 miles per hour. When they are exactly 120 miles apart, a fly takes off from the front of one of the trains, flying toward the other train at a constant rate of 100 miles per hour. When the fly reaches the other train, it instantly changes directions and starts flying toward the other train, still at 100 miles per hour. It keeps doing this back and forth until the trains finally collide.
If you add up all the distances back and forth that the fly has travelled, how much total distance has the fly travelled when the trains finally collide?

The fly has travelled exactly 100 miles. We can figure this out using some simple math. Becuase the trains are 120 miles apart when the fly takes off, and are travelling at 60 mph each, they will collide in exactly 1 hour. This gives the fly exactly 1 hour of flying time, going at a speed of 100 miles per hour. Thus, the fly will travel 100 miles in this hour.

A farmer challenges an engineer, a physicist, and a mathematician to fence off the largest amount of area using the least amount of fence. The engineer made his fence in a circle and said it was the most efficient. The physicist made a long line and said that the length was infinite. Then he said that fencing half of the Earth was the best. The mathematician laughed at the others and with his design, beat the others. What did he do?

The mathematician made a small circular fence around himself and declared himself to be on the outside.

It was a very large truck. The truck need to cross a 20 mile long bridge. Unfortunately, the bridge can only hold the weight of 12000 lbs. Even a single pound extra, the bridge would collapse. However the weight of the truck is exactly 12000 lbs. The driver carefully drove and crossed almost 85 percent distance of the bridge. He stopped to get a small break. Suddenly, a bird landed on the truck. Did the bridge collapse? Justify your answers with explanation!

No. The bridge doesn't collapse. The truck almost crossed 85 percent of total distance. Equivalent diesel would have been lost. So the extra weight of the bridge doesn't add any extra load to the bridge.

You have two jugs, one that holds exactly 3 gallons, and one that holds exactly 5 gallons. Using just these two jugs and a fire hose, how can you measure out exactly 4 gallons of water?

Fill the 5-gallon jug to the top, and then pour it into the 3-gallon jug until the 3-gallon jug is full. You now have 2 gallons remaining in the 5-gallon jug. Pour out the 3-gallon jug, and then pour the 2 gallons from the 5-gallon jug into the 3-gallon jug. Finally, fill the 5-gallon jug to the top and pour it into the 3-gallon jug until it's full. Since there was only space left for 1 more gallon in the 3-gallon jug, you now have exactly 4 gallons in the 5-gallon jug.